Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Pharmaceutics ; 16(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399247

RESUMO

In the current study, matrices of losartan potassium were formulated with two different polymers (Ethocel 10 premium and Ethocel 10FP premium), along with a filler and a lubricant, at different drug-to-polymer w/w ratios (10:3, 10:4, and 10:5). The matrices were tested by the direct compression method, and their hardness, diameter, thickness, friability, weight variation, content uniformity, and in vitro dissolution tests were assessed to determine 24-h drug release rates. The matrices with Ethocel 10 FP at a 10:4 ratio exhibited pseudo-zero-order kinetics (n-value of 0.986), while the dissolution data of the test matrices and reference tablets did not match. The new test-optimized matrices were also tested in rabbits, and their pharmacokinetic parameters were investigated: half-life (11.78 ± 0.018 h), Tmax (2.105 ± 1.131 h), Cmax (205.98 ± 0.321 µg/mL), AUCo (5931.10 ± 1.232 µg·h/mL), AUCo-inf (7348.46 ± 0.234 µg·h/mL), MRTo-48h (17.34 ± 0.184 h), and Cl (0.002 ± 0.134 mL/min). A correlation value of 0.985 between the in vitro and in vivo results observed for the test-optimized matrices was observed, indicating a level-A correlation between the percentage of the drug released in vitro and the percentage of the drug absorbed in vivo. The matrices might improve patient compliance with once-a-day dosing and therapeutic outcomes.

2.
J Nanobiotechnology ; 21(1): 477, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087359

RESUMO

Neurons and their connecting axons gradually degenerate in neurodegenerative diseases (NDs), leading to dysfunctionality of the neuronal cells and eventually their death. Drug delivery for the treatment of effected nervous system is notoriously complicated because of the presence of natural barriers, i.e., the blood-brain barrier and the blood cerebrospinal fluid barrier. Palliative care is currently the standard care for many diseases. Therefore, treatment programs that target the disease's origin rather than its symptoms are recommended. Nanotechnology-based drug delivery platforms offer an innovative way to circumvent these obstacles and deliver medications directly to the central nervous system, thereby enabling treatment of several common neurological problems, i.e., Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Interestingly, the combination of nanomedicine and gene therapy enables targeting of selective mutant genes responsible for the progression of NDs, which may provide a much-needed boost in the struggle against these diseases. Herein, we discussed various central nervous system delivery obstacles, followed by a detailed insight into the recently developed techniques to restore neurological function via the differentiation of neural stem cells. Moreover, a comprehensive background on the role of nanomedicine in controlling neurogenesis via differentiation of neural stem cells is explained. Additionally, numerous phytoconstituents with their neuroprotective properties and molecular targets in the identification and management of NDs are also deliberated. Furthermore, a detailed insight of the ongoing clinical trials and currently marketed products for the treatment of NDs is provided in this manuscript.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Encéfalo , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos/métodos , Nanotecnologia
3.
Heliyon ; 9(11): e21939, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027656

RESUMO

Purpose: Anti-leishmanial medications administered by oral and parenteral routes are less effective for treatment of cutaneous leishmaniasis (CL) and cause toxicity, hence targeted drug delivery is an efficient way to improve drug availability for CL with reduced toxicity. This study aimed to develop, characterize and evaluate nitazoxanide and quercetin co-loaded nanotransfersomal gel (NTZ-QUR-NTG) for the treatment of CL. Methods: NTZ-QUR-NT were prepared by thin film hydration method and were statistically optimized using Box-Behnken design. To ease the topical delivery and enhance the retention time, the NTZ-QUR-NT were dispersed in 2 % chitosan gel. Moreover, in-vitro drug release, ex-vivo permeation, macrophage uptake, cytotoxicity and anti-leishmanial assays were performed. Results: The optimized formulation indicated mean particle size 210 nm, poly dispersity index (PDI) 0.16, zeta potential (ZP) -15.1 mV and entrapment efficiency (EE) of NTZ and QUR was 88 % and 85 %, respectively. NTZ-QUR-NT and NTZ-QUR-NTG showed sustained release of the incorporated drugs as compared to the drug dispersions. Skin permeation of NTZ and QUR in NTZ-QUR-NTG was 4 times higher in comparison to the plain gels. The NTZ-QUR-NT cell internalization was almost 10-folds higher than NTZ-QUR dispersion. The cytotoxicity potential (CC50) of NTZ-QUR-NT (71.95 ± 3.32 µg/mL) was reduced as compared to NTZ-QUR dispersion (49.77 ± 2.15 µg/mL. A synergistic interaction was found between NTZ and QUR. Moreover, in-vitro anti-leishmanial assay presented a lower IC50 value of NTZ-QUR-NT as compared to NTZ-QUR dispersion. Additionally, a significantly reduced lesion size was observed in NTZ-QUR-NTG treated BALB/c mice, indicating its antileishmanial potential. Conclusion: It can be concluded that nanotransfersomal gel has the capability to retain and permeate the incorporated drugs through stratum corneum and induce synergetic anti-leishmanial effect of NTZ and QUR against cutaneous leishmaniasis.

4.
Drug Deliv ; 30(1): 2251720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649375

RESUMO

Herein we designed, optimized, and characterized the Metformin Hydrochloride Transethosomes (MTF-TES) and incorporate them into Chitosan gel to develop Metformin Hydrochloride loaded Transethosomal gel (MTF-TES gel) that provides a sustained release, improved transdermal flux and improved antidiabetic response of MTF. Design Expert® software (Ver. 12, Stat-Ease, USA) was applied for the statistical optimization of MTF-TES. The formulation with Mean Particle Size Distribution (MPSD) of 165.4 ± 2.3 nm, Zeta Potential (ZP) of -21.2 ± 1.9 mV, Polydispersity Index (PDI) of 0.169 ± 0.033, and MTF percent Entrapment Efficiency (%EE) of 89.76 ± 4.12 was considered to be optimized. To check the chemical incompatibility among the MTF and other formulation components, Fourier Transform Infrared (FTIR) spectroscopy was performed and demonstrated with no chemical interaction. Surface morphology, uniformity, and segregation were evaluated through Transmission Electron Microscopy (TEM). It was revealed that the nanoparticles were spherical and round in form with intact borders. The fabricated MTF-TES has shown sustained release followed by a more pronounced effect in MTF-TES gel as compared to the plain MTF solution (MTFS) at a pH of 7.4. The MTF-TES has shown enhanced permeation followed by MTF-TES gel as compared to the MTFS at a pH of 7.4. In vivo antidiabetic assay was performed and results have shown improved antidiabetic potential of the MTF-TES gel, in contrast to MTF-gel. Conclusively, MTF-TES is a promising anti-diabetic candidate for transdermal drug delivery that can provide sustained MTF release and enhanced antidiabetic effect.


Assuntos
Diabetes Mellitus , Animais , Camundongos , Ratos , Metformina/química , Metformina/farmacologia , Metformina/uso terapêutico , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Géis , Espectroscopia de Infravermelho com Transformada de Fourier , Software , Diabetes Mellitus/tratamento farmacológico , Preparações de Ação Retardada
7.
Drug Deliv ; 30(1): 2173335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36722301

RESUMO

Topical drug delivery is preferable route over systemic delivery in case of Cutaneous leishmaniasis (CL). Among the available agents, amphotericin B (AmB) and pentamidine (PTM) showed promising result against CL. However, monotherapy is associated with incidences of reoccurrence and resistance. Combination therapy is therefore recommended. Thin film hydration method was employed for amphotericin B-pentamidine loaded niosomes (AmB-PTM-NIO) preparation followed by their incorporation into chitosan gel. The optimization of AmB-PTM-NIO was done via Box Behnken Design method and in vitro and ex vivo analysis was performed. The optimized formulation indicated 226 nm particle size (PS) with spherical morphology, 0.173 polydispersity index (PDI), -36 mV zeta potential (ZP) and with entrapment efficiency (EE) of 91% (AmB) and 79% (PTM), respectively. The amphotericin B-pentamidine loaded niosomal gel (AmB-PTM-NIO-Gel) showed desirable characteristics including physicochemical properties, pH (5.1 ± 0.15), viscosity (31870 ± 25 cP), and gel spreadability (280 ± 26.46%). In vitro release of the AmB and PTM from AmB-PTM-NIO and AmB-PTM-NIO-Gel showed more prolonged release behavior as compared to their respective drug solution. Higher skin penetration, greater percentage inhibition and lower IC50 against the promastigotes shows that AmB-PTM-NIO has better antileishmanial activity. The obtained findings suggested that the developed AmB-PTM-NIO-Gel has excellent capability of permeation via skin layers, sustained release profile and augmented anti-leishmanial outcome of the incorporated drugs.


Assuntos
Leishmaniose Cutânea , Pentamidina , Humanos , Anfotericina B/farmacologia , Leishmaniose Cutânea/tratamento farmacológico , Terapia Combinada , Pele
8.
Biomater Adv ; 145: 213266, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577194

RESUMO

Current treatment options for cutaneous leishmaniasis are associated with myriad limiting factors including low penetration, poor efficacy, and drug toxicities. Herein, we reported imiquimod and terbinafine co-loaded mannosylated transethosomes (IMQ-TER-MTES) with enhanced cutaneous retention, macrophage targeting, anti-leishmanial potential, and dermal immunomodulation. IMQ-TER-MTES were optimized using Design Expert® followed by their loading into chitosan gel. Moreover, the antileishmanial response against amastigotes-infected macrophages and Leishmania-infected BALB/c mice was evaluated. Finally, the safety and immunomodulation activity of IMQ-TER-MTES gel was performed using BALB/c mice. Optimized IMQ-TER-MTES showed nano-sized particles with low poly-dispersibility index (PDI) and high drug entrapment. Mannosylation has augmented macrophage targeting and the internalization capability of TES. IMQ-TER-MTES showed significantly reduced IC50 value (19.56 ± 3.62 µg/ml), higher selectivity index (29.24), and synergism against Leishmania major (L. major) amastigotes. In L. major infected BALB/c mice, the cutaneous lesion healing potential of IMQ-TER-MTES was also elevated with reduced lesion size (1.52 ± 0.43 mm). Superior safety of IMQ-TER-MTES was observed in BALB/c mice along with adequate stimulation of dermal immune cells, in contrast to the ALDARA®. Moreover, incremented Nuclear factor Kappa-ß (NF-κß) and nitric oxide (NO) biosynthesis were observed with IMQ-TER-MTES.


Assuntos
Leishmania major , Leishmaniose Cutânea , Camundongos , Animais , Imiquimode/uso terapêutico , Terbinafina/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Imunidade
9.
BMC Pharmacol Toxicol ; 23(1): 86, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443818

RESUMO

BACKGROUND: Allopurinol (ALP), a xanthine oxidase inhibitor, is a first line drug for the treatment of gout and hyperuricemia. Being the member of BCS class II drugs, ALP has solubility problem, which affects its bioavailability. Also, ALP has shorter half-life and showed GI related problems. In present study, ALP was encapsulated in nanostructured lipid carriers (NLCs) to ensure enhanced bioavailability, improved efficacy and safety in vivo. METHODOLOGY: ALP-loaded NLCs were fabricated by micro-emulsion technique. The prepared NLCs were optimized via design expert in term of particle size, zeta potential and entrapment efficiency. FTIR, PXRD and TEM analysis were carried out to check chemical interaction, polymorphic form and surface morphology of the optimized formulation. ALP-loaded NLCs were then loaded into HPMC based poloxamer-407 gel and were characterized. In vitro and ex vivo analysis were carried out via dialysis membrane method and franz diffusion cell, respectively. Uric acid was used for induction of gout and the anti-gout activity of ALP-loaded NLCs gel was performed and compared with ALP suspension. RESULTS: The optimized formulation had particles in nano-range (238.13 nm) with suitable zeta potential (-31.5 mV), poly-dispersity index (0.115) and entrapment of 87.24%. FTIR results confirmed absence of chemical interaction among formulation ingredients. XRD indicated amorphous nature of ALP-loaded NLCs, whereas TEM analysis confirmed spherical morphology of nanoparticles. The optimized formulation was successfully loaded in to gel and characterized accordingly. The in vitro release and drug release kinetics models showed sustained release of the drug from ALP-loaded NLCs gel. Furthermore, about 28 fold enhanced permeation was observed from ALP-loaded NLCs gel as compared to conventional gel. Skin irritation study disclosed safety of ALP-loaded NLCs gel for transdermal application. Furthermore, ALP-loaded NLCs gel showed significantly enhanced anti-gout activity in Sprague-Dawley rats after transdermal administration as compared to oral ALP suspension. CONCLUSION: ALP-loaded NLCs gel after transdermal administration sustained the drug release, avoid gastrointestinal side effects and enhance the anti-gout performance of ALP. It can be concluded, that NLCs have the potential to deliver drugs via transdermal route as indicated in case of allopurinol.


Assuntos
Alopurinol , Hiperuricemia , Ratos , Animais , Ratos Sprague-Dawley , Administração Cutânea , Lipídeos
10.
Nanomedicine (Lond) ; 17(20): 1429-1447, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36301316

RESUMO

Aim: To develop and evaluate detergent-free, triple-drug-loaded, hyaluronate-coated elastic nanovesicles (H-ENVs) for the topical treatment of cutaneous leishmaniasis. Materials & methods: H-ENVs were developed and evaluated for vesicle size, entrapment efficiency, skin permeation and antileishmanial potential. Results: A 15.7 and 28.6% decrease in the cytotoxicity of paromomycin and amphotericin B, respectively, was observed in detergent-free ENVs compared with conventional ENVs. H-ENVs improved the efficacy of paromomycin against promastigote and amastigote models of leishmaniasis by 4- and 7.5-fold, respectively. In vivo investigation of H-ENVs demonstrated efficient topical management of cutaneous leishmaniasis. Conclusion: The results indicate the potential of H-ENVs as a safe topical treatment choice for cutaneous leishmaniasis.


Application of topical gel is an attractive alternative to oral or intravenous administration of drugs and is likely to deliver a higher dose of the drug to the target site with only rare systemic adverse effects. Nanotechnology-based topical drug delivery is an attractive aspect of pharmaceutical sciences that expresses interest in the topical treatment of cutaneous leishmaniasis. The authors' research focuses on the development and evaluation of novel multidrug-loaded, detergent-free nanovesicles for the simple and effective topical treatment of cutaneous leishmaniasis.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Humanos , Paromomicina , Leishmaniose Cutânea/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Administração Tópica
11.
R Soc Open Sci ; 9(10): 220428, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249328

RESUMO

Topical delivery is preferable over systemic delivery for cutaneous leishmaniasis, because of its easy administration, reduced systemic adverse effects and low cost. Nitazoxanide (NTZ) has broad-spectrum activity against various parasites and has the potential to avoid drug resistance developed by enzymatic mutations. NTZ oral formulation is associated with severe dyspepsia and stomach pain. Herein, NTZ-transethosomes (NTZ-TES) were prepared and loaded into chitosan gel (NTZ-TEG) for topical delivery. NTZ-TES were prepared by the thin-film hydration method and optimized statistically via the Box-Behnken method. The optimized formulation indicated excellent particle size (176 nm), polydispersity index (0.093), zeta potential (-26.4 mV) and entrapment efficiency (86%). The transmission electron microscopy analysis showed spherical-sized particles and Fourier-transform infrared spectroscopy analysis indicated no interaction among the excipients. Similarly, NTZ-TEG showed optimal pH, desirable viscosity and good spreadability. NTZ-TES and NTZ-TEG showed prolonged release behaviour and higher skin penetration and deposition in the epidermal/dermal layer of skin in comparison with the NTZ-dispersion. Moreover, NTZ-TES showed higher percentage inhibition, lower half-maximal inhibitory concentration (IC50) against promastigotes and higher macrophage uptake. Additionally, skin irritation and histopathology studies indicated the safe and non-irritant behaviour of the NTZ-TEG. The obtained findings suggested the enhanced skin permeation and improved anti-leishmanial effect of NTZ when administered as NTZ-TEG.

12.
AAPS PharmSciTech ; 23(6): 226, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35970966

RESUMO

The prime objective of this study was to develop amphotericin B (AMB) and rifampicin (RIF) co-loaded transfersomal gel (AMB-RIF co-loaded TFG) for effective treatment of cutaneous leishmaniasis (CL). AMB-RIF co-loaded TF was prepared by the thin-film hydration method and was optimized based on particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (%EE), and deformability index. Similarly, AMB-RIF co-loaded TFG was characterized in terms of rheology, spread ability, and pH. In vitro, ex vivo, and in vivo assays were performed to evaluate AMB-RIF co-loaded TF as a potential treatment option for CL. The optimized formulation had vesicles in nanosize range (167 nm) with suitable PDI (0.106), zeta potential (- 19.05 mV), and excellent %EE of RIF (66%) and AMB (85%). Moreover, it had appropriate deformability index (0.952). Additionally, AMB-RIF co-loaded TFG demonstrated suitable rheological behavior for topical application. AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG showed sustained release of the incorporated drugs as compared to AMB-RIF suspension. Furthermore, RIF permeation from AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG was enhanced fivefold and threefold, whereas AMB permeation was enhanced by eightfold and 6.6-fold, respectively. The significantly different IC50, higher CC50, and FIC50 (p < 0.5) showed synergistic antileishmanial potential of AMB-RIF co-loaded TF. Likewise, reduced lesion size and parasitic burden in AMB-RIF co-loaded TF-treated mouse group further established the antileishmanial effect of the optimized formulation. Besides, AMB-RIF co-loaded TFG showed a better safety profile. This study concluded that TFG may be a suitable carrier for co-delivery of AMB-RIF when administered topically for the treatment of CL.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Nanopartículas , Anfotericina B , Animais , Leishmaniose Cutânea/tratamento farmacológico , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Tamanho da Partícula
13.
Sci Rep ; 12(1): 14244, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987944

RESUMO

Herein, Imiquimod (IMQ) was incorporated in nanotransethosomes (nTES) to develop the IMQ-nTES nano-drug delivery system. IMQ-nTES was optimized using 23 factorial design. The optimized formulation was expressed with a particle size of 192.4 ± 1.60 nm, Poly-dispersibility of 0.115 ± 0.008, and IMQ percent entrapment efficiency of 91.05 ± 3.22%. Smooth and round morphology of IMQ-nTES vesicles was confirmed by TEM micrographs. Moreover, FTIR results have shown drug-excipient compatibility. The IMQ-nTES was laden inside the low molecular weight chitosan gel, which exhibited easy application, spreadability and no irritation to the applied skin. The release pattern has clearly exhibited improved dissolution properties of IMQ with the provision of the sustain release pattern. Higher IMQ content was deposited in deeper epidermis and dermis with IMQ-nTES gel, in contrast to ALDARA. In vivo, comparative toxicity study on BALB/c mice has shown significantly reduced (p < 0.001) psoriatic area severity index (PASI) score and less increment in ear thickness. Epidermal hyperplasia was an obvious finding with ALDARA which was, providentially, minimal in IMQ-nTES gel-treated skin. FTIR analysis of skin tissue has shown an enhancement of lipid and protein content in the ALDARA group, however, in the IMQ-nTES group no such change was observed. With ALDARA application, CD4+ T-cells and constitutive NF-κß expression were significantly elevated, in comparison to the IMQ-nTES gel treated group. Moreover, the adequate expression of IFN-γ and cytotoxic CD8+ T-cells were suggesting the preserved IMQ efficacy with IMQ-nTES gel. Quantification of cutaneous as well as systemic inflammatory markers has also suggested the reduced psoriatic potential of IMQ-nTES gel. In essence, IMQ-nTES gel can be a suitable alternative to ALDARA owing to its better safety profile.


Assuntos
Psoríase , Dermatopatias , Administração Cutânea , Animais , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Imiquimode/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Pele/metabolismo , Dermatopatias/induzido quimicamente , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo
14.
Polymers (Basel) ; 14(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893957

RESUMO

Controlled-release formulations are essential for those drugs that require fine tuning of their activity to increase the ratio between therapeutic vs. adverse effects. Losartan potassium is among those drugs whose adverse effects may somehow impair its purported benefits. Previous investigations have been carried out to ascertain the suitability of several polymers for being associated with losartan. This study is focused on the effects of Ethocel grade 10 and Carbopol 934P NF on losartan release. Flow and physical properties were assessed according to the protocols standardized by the pharmacopeia (USP-NF 29), and the drug release in phosphate buffer (pH = 6.8) was measured for 24 h. Data evidenced good to excellent flow and physical properties according to the drug/polymer ratio and the addition of co-excipients. The release rate in 24 h was found to be 63-69% to 79-82% without or with the addition of co-excipients, respectively, following zero-order kinetics. The results also suggest a significant difference with the release profile of a traditional release losartan formulation. The results suggest the suitability of Ethocel grade 10 and Carbopol 934P NF as components of a controlled-release losartan formulation.

15.
Toxicol Appl Pharmacol ; 449: 116127, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705140

RESUMO

Organotin (IV) compounds are a focus of research for potential use in cancer chemotherapy. Here, we established anticancer profile of dibutyltin (IV) carboxylate derivatives in prostate cancer (PCa) model. We determined cytotoxicity of a library of dibutyltin (IV) carboxylate derivatives and observed that dibutylstannanediyl (2Z,2'Z)-bis(4-(benzylamino)-4-oxobut-2-enoate (Ch-620; 10 µM) was minimally toxic to normal fibroblasts. Ch-620 (1-1.25 µM) inhibited proliferation of PCa and melanoma cells on short- and long-term exposures with induction of cell cycle arrest. Ch-620 treatment increased population of apoptotic cells, as assessed by flow cytometry, and activated caspase 3. Proteomics showed activation of PPARα, with repression of SMAD4 and integrin ß5 (ITGB5) in Ch-620-treated PCa cells. Further analysis demonstrated that Ch-620 resulted in phosphorylation of p38 MAPK, upregulation of PPARα and decreased expression of SMAD4 and ITGB5 with reduced migration of PCa cells. In vivo studies in PC3M grafted athymic nude mice showed that Ch-620 (5 µg/week; 7 weeks) treatment reduced tumor growth as opposed to untreated controls. Immunoblot analysis of tumors demonstrated upregulated p-p38 MAPK and PPARα, followed by a decline in SMAD4 and ITGB5. Immunohistochemistry reinforced these results with increased caspase 3 and p-p38 MAPK and diminished Ki67 staining in Ch-620 treated animals. Taken together, our data indicate that Ch-620 inhibited proliferation of PCa through modulation of MAPK/PPARα/SMAD4 signaling. Organotin (IV) carboxylate compounds; specifically Ch-620 can be a potential anticancer agent for the treatment of PCa subject to detailed pre-clinical and clinical investigations. This unlocks prospects for the development of new tin-based drugs in cancer therapeutics.


Assuntos
Compostos Orgânicos de Estanho , Neoplasias da Próstata , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Nus , Compostos Orgânicos de Estanho/farmacologia , PPAR alfa/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Proteína Smad4/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164127

RESUMO

Controlled release matrices have predictable drug release kinetics, provide drugs for an extended period of time, and reduce dosing frequency with improved patient compliance as compared with conventional tablet dosage forms. In the current research work, losartan potassium controlled release matrix tablets were fabricated and prepared with rate altering agents; that is, Ethocel grade 100 combined with Carbopol 934PNF. Various drug to polymer ratios were used. HPMC, CMC, and starch were incorporated in some of the matrices by replacing some amount of filler (5%). The direct compression method was adopted for the preparation of matrices. In phosphate buffer (pH 6.8), the dissolution study was conducted by adopting the USP method-I as the specified method. Drug release kinetics was determined and dissolution profiles were also compared with the reference standard. Prolonged release was observed for all matrices, but those with Ethocel 100FP Premium showed more extended release. The co-excipient (HPMC, CMC, and starch) exhibited enhancement in the drug release rates, while all controlled release matrices released the drug by anamolous non-Fickian diffusion mechanism. This combination of polymers (Ethocel grade 100 with Carbopol 934PNF) efficiently extended the drug release rates up to 24 h. It is suggested that these matrix tablets can be given in once a day dosage, which might improve patient compliance, and the polymeric blend of Ethocel grade 100 with Carbopol 934PNF might be used in the development of prolonged release matrices of other water-soluble drugs.


Assuntos
Losartan , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Losartan/química , Losartan/farmacocinética , Losartan/farmacologia , Comprimidos
17.
J Pharm Sci ; 111(6): 1798-1811, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35081406

RESUMO

Herein, Trifluralin (TFL) laden transfersomes (TFS) were investigated against Cutaneous Leishmaniasis (CL), via localized and targeted dermal delivery of TFL. Designed TFL-TFS were optimized utilizing 23 full factorial design on the basis of desired response factors including Particle size (P.S), Polydispersity index (PDI), TFL entrapment (%EE) and deformability index (DI). Optimized formulation was found to display P.S of 140.3 ± 2.3, PDI of 0.006 ± 0.002, %EE of 86 ± 0.5 and 43.5 ± 1.0 DI. Results of TEM and XRD analysis have shown intact spherical structure of TFL-TFS and alteration in TFL crystallinity, respectively. Moreover, the optimized TFL-TFS were loaded in Carbopol-940 gel to attain protracted skin retention. TFL-TFS were found to exhibit sustain TFL release profile for up to 24 h. Ameliorated skin permeation of TFL-TFS, even in absence of permeation enhancers, has shown its suitability for cutaneous application. Macrophage uptake assay demonstrated higher intracellular penetration, evidenced by intense reddish fluorescence of rhodamine loaded TFS in comparison to rhodamine-solution. In vitro anti-leishmanial assessment was showing 2.86-folds and 3.07-folds decrement in IC50-value of TFL-TFS against L. tropica KWH23 amastigotes and promastigotes, respectively. Percent inhibition assay against intra-macrophage amastigotes demonstrated that 90.87% amastigotes were assassinated at 50 µg/ml concentration of TFL-TFS, in comparison to the plain TFL-solution, exhibiting 54% parasitic killing.


Assuntos
Leishmaniose Cutânea , Trifluralina , Administração Cutânea , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Tamanho da Partícula , Rodaminas , Pele , Trifluralina/uso terapêutico
18.
Nanomedicine ; 40: 102490, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748957

RESUMO

The basic aim of the study was to develop and evaluate the triple drug loaded cationic nano-vesicles (cNVs), where miltefosine was used as a replacement of surfactant (apart from its anti-leishmanial role), in addition to meglumine antimoniate (MAM) and imiquimod (Imq), as a combination therapy for the topical treatment of cutaneous leishmaniasis (CL). The optimized formulation was nano-sized (86.2 ±â€¯2.7 nm) with high entrapment efficiency (63.8 ±â€¯2.1% (MAM) and 81.4 ±â€¯2.3% (Imq)). In-vivo skin irritation assay showed reduced irritation potential and a decrease in the cytotoxicity of cNVs as compared to conventional NVs (having sodium deoxycholate as a surfactant). A synergistic interaction between drugs was observed against intracellular amastigotes, whereas the in-vivo antileishmanial study presented a significant reduction in the parasitic burden. The results suggested the potential of surfactant free, triple drug loaded cNVs as an efficient vehicle for the safe topical treatment of CL.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose Cutânea , Administração Tópica , Antiprotozoários/farmacologia , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Tensoativos
19.
Front Public Health ; 9: 703631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447737

RESUMO

Introduction: Pakistan ranks fifth in the globally estimated burden of tuberculosis (TB) case incidence. Annually, a gap of 241,688 patients with TB exists between estimated TB incidence and actual TB case notification in Pakistan. These undetected/missed TB cases initiate TB care from providers in the private healthcare system who are less motivated to notify patients to the national database that leads to significant underdetection of actual TB cases in the Pakistani community. To engage these private providers in reaching out to missing TB cases, a national implementation trial of the Public-Private Mix (PPM) model was cohesively launched by National TB Control Program (NTP) Pakistan in 2014. The study aims to assess the implementation, contribution, and relative treatment outcomes of cohesively implemented PPM model in comparison to the non-PPM model. Methods: A retrospective record review of all forms (new and relapse) patients with TB notified from July 2015 to June 2016 was conducted both for PPM- and non-PPM models. Results: The PPM model was implemented in 92 districts in total through four different approaches and contributed 25% (81,016 TB cases) to the national TB case notification. The PPM and non-PPM case notification showed a strong statistical difference in proportions among compared variables related to gender (p < 0.001), age group (p < 0.000), and province (p < 0.000). Among PPM approaches, general practitioners and non-governmental-organization facilities achieve a treatment success of 94-95%; private hospitals achieve 82% success, whereas Parastatals are unable to follow more than half of their notified TB cases. Discussion: The PPM model findings in Pakistan are considerably consistent with countries that have prioritized PPM for an increasing trend in the TB case notification to their national TB control programs. Different PPM approaches need to be scaled up in terms of PPM implemented districts, PPM coverage, PPM coverage efficiency, and PPM coverage outcome in the Pakistani healthcare system in the future.


Assuntos
Tuberculose , Atenção à Saúde , Humanos , Incidência , Paquistão/epidemiologia , Estudos Retrospectivos , Tuberculose/tratamento farmacológico
20.
Drug Dev Ind Pharm ; 47(7): 1090-1099, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34279160

RESUMO

OBJECTIVE: Biodegradable polymers are extensively used due to their efficient safety profiles. The aim of the current study was to fabricate, evaluate, and characterize biodegradable, biocompatible fluconazole (FLZ) loaded chitosan (CHS) chondroitin sulfate (CS) nanoparticles (NPs) for topical delivery. Polymers utilized in the formulation not only served as a carrier system but also aided in fighting with complex etiology of the disease due to their innate antifungal activities. METHODS: NPs were prepared by the complex coacervation method, then were optimized for various parameters and subsequently loaded into a cream. RESULTS: Scanning electron microscopic (SEM) analysis showed spherical morphology of the NPs. Prepared NPs showed an average particle size in the range of 350-450 nm and an encapsulation efficiency (EE) of 86%. The polydispersity index (PDI) was found to be 0.148 that showed a uniform distribution of NPs. Fourier transform infrared (FTIR) spectroscopy confirmed the absence of any electrostatic interaction between ingredients. In vitro drug release analyses exhibited a sustained release of the drug and higher antifungal activity than free FLZ. Ex vivo permeability and drug distribution in different skin layers ensured a site-specific delivery of the FLZ-NPs. As compared with free FLZ and other control groups, the prepared NPs also exhibited significantly higher antifungal activity against Candida albicans (p < .01). CONCLUSION: It was concluded from the results that the FLZ-NPs laden cream could be a potential candidate for topical and site-specific delivery of the drug cargo for the potential treatment of fungal infections.


Assuntos
Quitosana , Micoses , Nanopartículas , Portadores de Fármacos , Liberação Controlada de Fármacos , Fluconazol , Humanos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...